A38) (Aufgabe 1)
Sei \(f : \mathbb{R}^3 \rightarrow \mathbb{R}^3 \) gegeben durch

\[
f(x, y, z) = \begin{pmatrix} e^x + e^y \\ e^{-y} + z \\ e^x + y + \frac{3z}{4} \end{pmatrix}.
\]

a) Berechnen Sie die Jacobi-Matrix von \(f \).

b) Berechnen Sie die Determinante der Jacobi-Matrix.

c) Berechnen Sie, für welche \((x, y, z)^T \in \mathbb{R}^3 \) die Jacobi-Matrix invertierbar ist.

\[
\text{(4+3+4=11 Punkte)}
\]

Lösung

a) \[
f'(x, y, z) = \begin{pmatrix} e^x & e^y & 0 \\ e^x & -e^{-y} & 1 \\ e^x & 1 & \frac{3}{4} \end{pmatrix}
\]

b) \[
det f'(x, y, z) \text{ entw. n. 1. Zeile } = e^x (-\frac{3}{4} e^{-y} - 1) + e^x \cdot e^y = e^x \left(e^y - 1 - \frac{3}{4} e^{-y} \right)
\]

c) \[
det f'(x, y, z) = 0 \iff (e^y)^2 - e^y - \frac{3}{4} = 0
\]
\[
\iff e^y = \frac{1}{2} (-) + \sqrt{\frac{1}{4} + \frac{3}{4}} = \frac{1}{2} (-) + 1 = \frac{3}{2}
\]
\[
\text{ (die negative Lösung scheidet offensichtlich aus) } \iff y = \ln \frac{3}{2}
\]

Die Jacobi-Matrix ist für alle \((x, y, z) \in \mathbb{R}^2 \) mit \(y \neq \ln \frac{3}{2} \) invertierbar.
A39) (Aufgabe 2)
Sei $f : \mathbb{R} \rightarrow \mathbb{R}$ gegeben durch

$$f(x) = 1 + \int_{0}^{x} e^{\sin t} \, dt.$$

a) Berechnen Sie die Taylor-Polynome T_1, T_2, T_3 erster, zweiter, dritter Ordnung von f zum Entwicklungspunkt $x_0 = 0$.

b) Für das Taylor-Polynom T_2 leiten Sie eine Abschätzung des Restgliedes R_2 der Form

$$|R_2(x)| \leq c |x|^3 \quad \forall x \in \mathbb{R}$$

her (d.h. geben Sie eine geeignete Konstante c an).

(6+4=10 Punkte)

Lösung

a)

$$f(x) = 1 + \int_{0}^{x} e^{\sin t} \, dt \quad f(0) = 1$$

$$f'(x) = e^{\sin(x)} \quad f'(0) = 1$$

$$f''(x) = \cos(x) \cdot e^{\sin(x)} \quad f''(0) = 1$$

$$f'''(x) = -\sin(x) \cdot e^{\sin(x)} + \cos^2(x) \cdot e^{\sin(x)} \quad f'''(0) = 1$$

$$\Rightarrow T_1(x) = f(0) + f'(0) \cdot x = 1 + x,$$

$$T_2(x) = f(0) + f'(0) \cdot x + f''(0) \cdot \frac{x^2}{2} = 1 + x + \frac{x^2}{2},$$

$$T_3(x) = 1 + x + \frac{x^2}{2} + \frac{x^3}{6}$$

b)

$$R_2(x) = \frac{f'''(\xi)}{3!} x^3 = \frac{1}{6} \left(-\sin(\xi) + \cos^2(\xi) \right) \cdot e^{\sin(\xi)} \cdot x^3$$

$$\Rightarrow |R_2(x)| = \frac{1}{6} \left| \sin(\xi) + \cos^2(\xi) \right| \cdot e^{\sin(\xi)} \cdot |x|^3 \leq \frac{e}{3} |x|^3$$

A40) (Aufgabe 3)

Ein bewegter Gegenstand im \mathbb{R}^2 befindet sich zum Zeitpunkt t am Ort $\left(\cosh t \begin{array}{c} \sinh t \end{array} \right)$.

a) Berechnen Sie die Bahngeschwindigkeit in Abhängigkeit von t.

b) Bestimmen Sie die Länge des Weges, die der Körper vom Zeitpunkt $t=0$ bis zum Zeitpunkt $t=1$ zurücklegt.

(4+4=8 Punkte)

Lösung
\[s(t) = \begin{pmatrix} \cosh(t) \\ t \end{pmatrix} \]

\[v(t) = s'(t) = \begin{pmatrix} \sinh(t) \\ 1 \end{pmatrix}, \quad ||v(t)|| = \sqrt{1 + \sinh^2(t)} = \cosh(t) \]

\[L = \int_0^1 ||v(t)|| dt = \int_0^1 \cosh(t) dt = \sinh(t)|_0^1 = \sinh(1) = \frac{1}{2}(e - \frac{1}{e}) \]
A41) (Aufgabe 4)

a) Berechnen Sie (im Falle der Existenz) folgende Grenzwerte:
 \[\lim_{x \to 0} \frac{\sin(x) \ln(1+2x+3x^2)}{x(e^x-1)}, \quad \lim_{x \to 0} \frac{1}{e^x-1} - \frac{1}{x} \]

b) Bestimmen Sie alle potenziellen lokalen Extremstellen (die sog. 'kritische Stellen',
 d.h. Stellen mit \(\nabla f = 0 \)) der Funktion
 \[f(x, y) = (x^2 + y)^2 + 4xy - x. \]

 \(6+5=11 \text{ Punkte}\)
 Summe: 40 Punkte

Lösung 41

a) (i) Am einfachsten hat man es, wenn man erkennt, dass man einen Term, dessen Grenzwert man kennt (der nicht null oder \(\pm \infty \) ist), abspalten kann:
 \[\lim_{x \to 0} \frac{\sin(x) \ln(1+2x+3x^2)}{x(e^x-1)} = \lim_{x \to 0} \frac{\sin(x)}{x} \cdot \lim_{x \to 0} \frac{\ln(1+2x+3x^2)}{e^x-1} \]
 l'Hosp. \quad 1 \cdot \lim_{x \to 0} \frac{1+2x+3x^2}{e^x} = 2

 Alternativ kann man auch 'straight forward' vorgehen, was etwas aufwändiger ist, da die zu berechnenden Ableitungen komplizierter sind und man 2mal l'Hospital anwenden muss:

 \[\lim_{x \to 0} \frac{\sin(x) \ln(1+2x+3x^2)}{x(e^x-1)} = \lim_{x \to 0} \frac{\sin(x)}{x} \cdot \lim_{x \to 0} \frac{\ln(1+2x+3x^2)}{e^x-1} \]
 l'Hosp. \quad 1 \cdot \lim_{x \to 0} \frac{1+2x+3x^2}{e^x} = 2

 \[\lim_{x \to 0} \sin x \ln(1+2x+3x^2) + 2 \cos x \lim_{x \to 0} \frac{1+2x+3x^2}{e^x-1} \quad \lim_{x \to 0} \frac{2+6x}{1+2x+3x^2} \]
 l'Hosp. \quad \lim_{x \to 0} \frac{2+6x}{1+2x+3x^2} \quad \lim_{x \to 0} \frac{6(1+2x+3x^2) - (2+6x)^2}{(1+2x+3x^2)^2}

 \[\frac{1}{2} = 2 \]

(ii) \[\lim_{x \to 0} \frac{1}{e^x-1} - \frac{1}{x} = \lim_{x \to 0} \frac{x - e^x + 1}{x(e^x-1)} \quad \lim_{x \to 0} \frac{1-e^x}{x(e^x-1)} \]

 l'Hosp. \quad \lim_{x \to 0} -\frac{e^x}{2e^x + xe^x} = -\frac{1}{2}

b) \(\nabla f(x, y) \left(\begin{array}{c} 2(x^2 + y) \cdot 2x + 4y - 1 \\ 2(x^2 + y) + 4 \end{array} \right) \) \(\left(\begin{array}{c} 0 \\ 0 \end{array} \right) \) \(\Rightarrow y = -x^2 - 2x \) einsetzen:
 \[0 = 2(x^2 - x^2 - 2x) \cdot 2x + 4(-x^2 - 2x) - 1 \]
 \[= -8x^2 - 4x^2 - 8x - 1 \]
\[-12x^2 - 8x - 1 \]
\[\Leftrightarrow x^2 + \frac{8}{12}x + \frac{1}{12} = 0 \]
\[\Leftrightarrow x_{1,2} = \frac{1}{3} \pm \sqrt{\frac{1}{9} - \frac{1}{12}} = -\frac{1}{3} \pm \sqrt{\frac{3}{3\cdot36}} = -\frac{1}{3} \pm \frac{1}{6} \in \left\{ -\frac{1}{2}, -\frac{1}{6} \right\} \]
\[x = -\frac{1}{2} \Rightarrow y = -\frac{1}{4} + 1 = \frac{3}{4} \]
\[x = -\frac{1}{6} \Rightarrow y = -\frac{1}{36} + \frac{12}{36} = \frac{11}{36} \]
Ergebnis: Die Kritischen Punkte sind \((-\frac{1}{2}, \frac{3}{4}), (-\frac{1}{6}, \frac{11}{36})\).
Präsenzaufgaben:

P30) (Niveaumengen im \mathbb{R}^2, Tangenten)
Bestimmen Sie die Niveaumenge $N_f(c)$ der Funktion

$$f : \mathbb{R}^2 \to \mathbb{R}, \quad f(x, y) = x^2 - y^2,$$

in der der Punkt $x_0 = (5, 4)^T$ enthalten ist. Bestimmen Sie eine stetig differenzierbare parametrisierte Kurve $k(t)$ mit $x_0 \in \text{Bild}(k) \subset N_f(c)$, und berechnen Sie die Gleichung der Tangente an diese Kurve (d.h. an $N_f(c)$) im Punkt x_0 in Normalen-, Nullstellen- und Parameterform.

Lösung

$$c = f(x_0) = 25 - 16 = 9$$

$N_f(9) = \{(x, y) \in \mathbb{R}^2 : x^2 = y^2 + 9\}$

$= \{(x, y) \in \mathbb{R}^2 : x = \sqrt{y^2 + 9}\} \cup \{(x, y) \in \mathbb{R}^2 : x = -\sqrt{y^2 + 9}\} =: N_1 \cup N_2$ mit $x_0 \in N_1$.

N_1 als Kurvenparameterform darstellen: Wir wählen y als Kurvenparameter:

$$k(y) = \left(\frac{\sqrt{y^2 + 9}}{y} \right), \quad k'(y) = \left(\frac{\frac{y}{\sqrt{y^2 + 9}}}{1} \right), \quad k'(4) = \left(\frac{\frac{4}{5}}{1} \right)$$

Eine Normale ist z.B. $= \pm \left(\frac{-1}{\frac{4}{5}} \right)$.

Also: $\langle v, x - x_0 \rangle = 0$

$$\left\langle \left(\frac{-1}{\frac{4}{5}} \right), \left(\frac{x}{y} \right) - \left(\frac{5}{4} \right) \right\rangle = 0$$

$\Leftrightarrow \left\langle \left(\frac{-1}{\frac{4}{5}} \right), \left(\frac{x}{y} \right) \right\rangle + \frac{9}{5} = 0$ Normalenform

$\Leftrightarrow -x + \frac{y}{\frac{4}{5}} + \frac{9}{5} = 0$

$\Leftrightarrow -5x + 4y + 9 = 0$ Nullstellenform(en)

Parameterform: z.B.

$$k(t) = x_0 + t k'(4) = \left(\frac{5}{4} \right) + t \left(\frac{\frac{4}{5}}{1} \right)$$

oder

$$\left(\frac{5}{4} \right) + t \left(\frac{4}{5} \right)$$

P31) (Niveaumengen im \mathbb{R}^3, Tangentialebenen, Polarkoordinaten)

a) Berechnen Sie die Niveaumenge $N_f(0)$ der Funktion

$$f : \mathbb{R}^3 \to \mathbb{R}, \quad f(x, y, z) = x^2 + y^2 - \cosh^2 z.$$

b) In welchen Bereichen kann $N_f(0)$ als Graf $(x, y, g(x, y))$ einer Funktion $z = g(x, y)$ dargestellt werden? Berechnen Sie diese, und bestimmen Sie wiederum deren Niveaumengen $N_g(c)$ ($c \in \mathbb{R}$).
c) Bestimmen Sie die Tangentialebenengleichung an die Fläche \(z = g(x, y) \) aus b) in \((x_0, y_0, z_0)\) mit \((x_0, y_0) = (3, 4), z_0 = g(x_0, y_0)\).

d) Durch Einführung von Polarkoordinaten in der \(x\)-\(y\)-Ebene bestimme man eine Parameterdarstellung von \(N_f(0) \) in der Form \((u, v) \mapsto \begin{pmatrix} h_1(u, v) \\ h_2(u, v) \\ h_3(u, v) \end{pmatrix} \).

e) Skizzieren Sie \(N_f(0) \).

Lösung

a) \((x, y, z) \in N_f(0) \iff x^2 + y^2 = \cosh^2(z)\)

Wie stellt man die Niveauflächen dar?

Nach \(z \) auflösen: \(\cosh(z) = \pm \sqrt{x^2 + y^2} \); \(\cosh \) ist immer positiv, daher ist nur die positive Wurzel relevant

b) Der \(\cosh \) ist invertierbar in \([0, \infty)\) und in \((-\infty, 0)\), mit Bild(\(\cosh \)) = \([1, \infty)\) (siehe auch die nachfolgenden Skizzen)

\[z = g_1(x, y) = \arccosh((x^2 + y^2)^{\frac{1}{2}}), \quad z \geq 0 \]
\[z = g_2(x, y) = -\arccosh((x^2 + y^2)^{\frac{1}{2}}), \quad z \leq 0 \]

Nun die Niveaumengen von \(g_1, g_2 : \{x^2 + y^2 \geq 1\} \rightarrow \mathbb{R} \)

\[N_{g_1}(x, y) \in \mathbb{R}^2 \mid g_1(x, y) : c\} = \{(x, y) \in \mathbb{R}^2 : \arccosh(x^2 + y^2)^{\frac{1}{2}} = c\} \quad c \geq 1 \]
\[= \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = \cosh^2(c)\} \]

Bem.: \(N_{g_1}(c) = \emptyset \) für \(c < 1 \)

\[N_{g_2}(c) = \{\arccosh(x^2 + y^2)^{\frac{1}{2}} = -c\} = \{\sqrt{x^2 + y^2} = \cosh(-c) = \cosh(c)\} \]

Die Niveaumengen sind also Kreise mit dem Radius \(r = \cosh(c) \).

Es gibt 2 Tangentialebenen: an \(g_1 \) und an \(g_2 \). Man suche jeweils den Normalenvektor:

Da \(\nabla f \perp \) zur Ebene, folgt mit \(z_0 := g_{1,2}(3, 4) = \pm \arccosh(5) \):

\[\nabla f(3, 4, z_0) \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix} - \begin{pmatrix} 3 \\ 4 \\ z_0 \end{pmatrix} \geq 0 \]

Punkt der Ebene

Nun ist

\[\nabla f(x, y, z) = \begin{pmatrix} 2x \\ 2y \\ -2 \cosh(z) \sinh(z) \end{pmatrix} \]

also

\[\nabla f(3, 4, z_0) = \begin{pmatrix} 6 \\ 8 \\ -2 \cosh(z_0) \sinh(z_0) \end{pmatrix} = \begin{pmatrix} 6 \\ 8 \\ -10 \sinh(z_0) \end{pmatrix} = \begin{pmatrix} 6 \\ 8 \\ \pm 10 \sqrt{\cosh^2(z_0) - 1} \end{pmatrix} = \begin{pmatrix} 6 \\ 8 \\ \pm 10 \sqrt{24} \end{pmatrix} \]

Es folgt:
< \begin{pmatrix} 3 \\ 4 \\
\pm 10\sqrt{6} \end{pmatrix}, \begin{pmatrix} x - 3 \\ y - 4 \\ z - z_0 \end{pmatrix} > = 0
\iff 3(x - 3) + 4(y - 4) \pm 10\sqrt{6}(z \pm \arccosh(5)) = 0

d) Da \(x^2 + y^2 = \cosh^2(z) \), setzen wir
\(x = \cosh(z) \cos(\varphi) \)
\(y = \cosh(z) \sin(\varphi) \)
und erhalten
\((z, \varphi) \rightarrow \begin{pmatrix} \cosh(z) \cos(\varphi) \\
\cosh(z) \sin(\varphi) \\
z \end{pmatrix} \)

Skizze:

\[
\begin{array}{c}
\cosh(x) \\
\text{arcosh}(x) \\
\varphi
\end{array}
\]

P32) (Tensorprodukt von Vektoren)
Das Tensorprodukt zweier Vektoren \(x \in \mathbb{R}^n, y \in \mathbb{R}^m \) wurde in der Vorlesung definiert durch
\[x \otimes y := x y^T \in \mathbb{R}^{n \times m} \]
im Sinne der Matrizenmultiplikation.
Bestimmen Sie \((x \otimes y)^T\) und \((x \otimes y)z\) für \(z \in \mathbb{R}^m \) und speziell \((x \otimes y)y\). Für \(n = m \) berechne man auch \((x \otimes y)x\).

Lösung
\(x \otimes y = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} (y_1, \ldots, y_m) = \begin{pmatrix} x_1 y_1 & \cdots & x_1 y_m \\ \vdots & \ddots & \vdots \\ x_n y_1 & \cdots & x_n y_m \end{pmatrix} \)

\[\Rightarrow (x \otimes y)^T = \begin{pmatrix} x_1 y_1 & \cdots & x_1 y_1 \\ \vdots & \ddots & \vdots \\ x_n y_1 & \cdots & x_n y_m \end{pmatrix} = \begin{pmatrix} y_1 \\ \vdots \\ y_m \end{pmatrix} (x_1, \ldots, x_n) = y \otimes x \]

Für \(z \in \mathbb{R}^m \) ist

\[(x \otimes y)z = \begin{pmatrix} x_1 y_1 & \cdots & x_1 y_m \\ \vdots & \ddots & \vdots \\ x_n y_1 & \cdots & x_n y_m \end{pmatrix} \begin{pmatrix} y_1 \\ \vdots \\ y_m \end{pmatrix} (z_1, \ldots, z_m) = \begin{pmatrix} x_1 \langle y, z \rangle \\ \vdots \\ x_n \langle y, z \rangle \end{pmatrix} = x \langle y, z \rangle \]

\[= x (y^T z) = (y^T \cdot z) x \]

Für \(z := y \) also

\[(x \otimes y)y = ||y||^2 x \]

Für \(z := x \) im Falle \(n=m \)

\[(x \otimes y)x = \langle y, x \rangle x \] (dies ist die (orthonormale) Projektion von \(y \) auf \(x \))